INtUBARSIC 1.2.5 Auick Reference

16-bit variables and arrays must start with #
$0000 = %oo00000O = “ “ = 0

REM This 1is a comment FOR i = value TO value [STEP value]
¢ This 1s a comment too NEXT [i]
CONST name = value WHILE expr ... WEND
SIGNED var_or_array DO WHILE expr ... LOOP
UNSIGNED var_or_array DO UNTIL expr ... LOOP
VARPTR var_or_array DO ... LOOP WHILE expr
DIM array(size) DO ... LOOP UNTIL expr
label: PROCEDURE ¢ One Lline EXIT (FOR/WHILE/DO)
. END
GOTO label IF expr GOTO label
GOSUB procedure IF expr [ELSEIF expr THEN ...]
RETURN [ELSE label] END IF

ON expr GOTO label[, label...] ¢ IntyBASIC’s switch statement
ON expr GOSUB label[,, label...] ¢ Can omit labels to skip for certain values
ON FRAME GOSUB label ¢ Can only appear once

STACK_CHECK ¢ Checks for stack overflows in VBLANK routine

WAIT “ For VBLANK - 66hz NTSC, 56hz PAL

POKE address, value INCLUDE “filename.bas”

RESTORE label ¢ Sets read point ASM INCLUDE “filename.asm”

READ var[, var...] ASM assembler_instruction

var = labelname(index) ¢ Equivalent CALL asm_function([argument, ...])
DATA const[, const...] var = USR asm_function([argument, ...])
DATA string DEF FN function([var, ...]) = expr

DEFINE [ALTERNATE] card_num, total, label
DEFINE [ALTERNATE] card_num, total, VARPTR label(expr)

‘Secondary PSG (requires ECS) 1identical except SOUND 5 through 9

SOUND 0, sound_12bit, vol_4bit ¢ Channel A
SOUND 1, sound 12bit, vol 4bit ¢ Channel B
SOUND 2, sound_12bit, vol_4bit ¢ Channel C

SOUND 3, sound 16bit, type_ 4bit ‘ Volume envelope (frequency/shape)
SOUND 4, noise_5bit, mix_reg ¢ Noise and mix register ($38 value by
default)

SOUND (0...2), sound_12bit, 48 ¢ Magic volume number, means use envelope on 3

SPRITE index, x_coord, y_coord, cardinfo ¢ Index = sprite number

x_coord bits: y_coord bits: cardinfo bits:
7-0: position 6-0: position 2-0: lower bits/color
8: interaction 7: 16 line sprite 11-3: card number
9: visibility 9-8: Scale: 00,01,10,11 12: upper bit/color
10: double width (0.5x, 1x, 2x, 4x) 13: mob behind bg
10: flip X
11: flip VY

CLS ¢ Clears screen, sets cursor to upper left

PRINT [AT expr] [COLOR expr][,] string[, string...] ¢ XOR with color present

Foreground/Background COLOR bits: Color Stack COLOR bits:
2-0: Foreground color (0-7) 2-0: Low 3 bits of FG color
8-9: Background bits 0-1 12: High bit of FG color
12: Background bit 3 (not 2!) (Must be @ for GROM cards)
13: Background bit 2 13: Change color stack

SCROLL offset x, offset_y, move_ screen
‘ move_screen will move screen if offset_x or offset_y exceed 7
“ 0 =no move, 1 = move left, 2 = move right, 3 = move up, 4 = move down

BORDER color, mask ¢ color = @ through 15
“ mask: © = mask none, 1 = mask left column, 2 = mask top row, 3 = mask
both

SCREEN label[, source_offset, target_offset, cols, rows[, source_width]]

“ Label can also be #array() for dynamically-drawn elements

¢ source_offset = distance from Label, target_offset = distance/screen pos.
7

BITMAP “__ XX __ ” “ Anything not “©”, “ », “.”, or space = 1.

¢ Should be paired. Stored as 16-bit DECLEs (high bits = row 2, low = row
1)

PLAY SIMPLE [NO DRUMS] ¢ Simple means sound channel 2 is available

PLAY FULL [NO DRUMS] ¢ NO DRUMS means sound channel 4 is available
PLAY VOLUME expr ¢ 0 = silent, 15 = max
PLAY NONE

¢ Turn off sound with SOUND 4,0,$38 after using NO DRUMS

“ Turn off sound with SOUND (1 3),1,0 and SOUND 4,0,$38 after NONE

PLAY label

“ Label can also be #array() for dynamically generated music

label: DATA tempo
MUSIC notel, note2, note3[, note4]

¢ Ticks per note, 50 ticks per second NTSC/PAL both

Mandatory parts of note: (1-3 only)
Note + Octave (C2 through C8)
Sharp notes: D4#

Drums: (note4 only)

M1 = strong, M2 = tap, M3 = roll

Can also add instrument after note:
W = piano, X = clarinet,
Y = flute, Z = bass (C4#W, etc.)
- means silence (no note for beat)
S means sustain previous note

VOICE INIT ‘ Must come before any voice commands
VOICE PLAY label ¢ Play sound information at Label (or #array())
VOICE WAIT “ Halt execution until voice queue 1is clear
VOICE PLAY WAIT label ¢ Play voice and halt execution until sound is done
VOICE NUMBER expr ¢ Say number out Loud (“twenty seven thousand”)
label: VOICE phoneme_or_phrase[, phoneme_or_phrase...], ©

Phrases: Phonemes:

MATTEL, ZERO, ONE, TWO, THREE,
FOUR, FIVE, SIX, SEVEN, EIGHT,
NINE, TEN, ELEVEN, TWELVE,
THIRTEEN, FOURTEEN, FIFTEEN,
SIXTEEN, SEVENTEEN, EIGHTEEN,
NINETEEN, TWENTY, THIRTY, FOURTY,
FIFTY, SIXTY, SEVENTY, EIGHTY,
NINETY, HUNDRED, THOUSAND, TEEN,

PAS, PA4, PA3, PA2, PAl (pauses),
AA, AE1l, AO, AR, AW, AX, AY, BB1,
BB2, CH, DD1, DD2, DH1, DH2, EH,
EL, ER1, ER2, EY, FF, GGl, GG2,
GG3, HH1, HH2, IH, IY, JH, KK1,
KK2, KK3, LL, MM, NG1, NN1, NN2,
OR2, OW, OY, PP, RR1, RR2, SH, SS,
TH, TT1, TT2, UH, UW1, UW2, WV,

TY, PRESS, ENTER, OR, AND WH, WW, XR2, YR, YY1, YY2, ZH, ZZ
FLASH INIT ¢ Put at start of program, compile --jlp
FLASH ERASE row “ row goes from FLASH.FIRST to FLASH.LAST

FLASH READ row, VARPTR #array() ¢ #array() must hold exactly 96 elements
FLASH WRITE row, VARPTR #array() ¢ Flash ops stop execution for a moment

Number of 8-bits variables allowed: 228

Subtract 3 1if you use SCROLL
Subtract 6 if you use the keypad

Subtract 3 if you use VOICE
Subtract 26 if you use PLAY

Number of 16-bits variables allowed: 47
7962 if using --jlp or --cc3 switch)

Subtract 20 if you use SCROLL

Subtract 30 if you use VOICE

Controller variables (CONT is all controllers, CONT1 and CONT2 are

specific):

CONT CONT1 CONT2

Contains bitmask from $01ff (left/1), $01fe (right/2), or both together

CONT.UP CONT1.UP CONT2.UP Non-zero if UP pressed

CONT .DOWN CONT1.DOWN CONT2.DOWN Non-zero if DOWN pressed

CONT.LEFT CONT1.LEFT CONT2.LEFT Non-zero if LEFT pressed

CONT.RIGHT CONT1.RIGHT | CONT2.RIGHT Non-zero if RIGHT pressed

CONT.BUTTON | CONT1.BUTTO | CONT2.BUTTON | Non-zero 1if any button pressed
N

CONT.BO CONT1.BO CONT2.B0 Non-zero 1if top buttons pressed

CONT.B1 CONT1.B1 CONT2.B1 Non-zero if left button pressed

CONT.B2 CONT1.B2 CONT2.B2 Non-zero if right button pressed

CONT.KEY CONT1.KEY CONT2.KEY

Current pressed key (0-9, 160=clear, 1l=enter, 12=not pressed)
Because movements can be read as keys, wait for 12 before waiting for Rey

coLe

coL1

coL2 coL3 coL4 CcoL5 coLe coL7

sprite

Collision between sprites for frame.

Bit ©6-7 = collision with that

Bit 8 = collision against background pixel, Bit 9 = against borders

RAND
RAND (max)

RANDOM(max)

LEN(string)

POS (expr)
used

FRAME
NTSC

#MOBSHADOW()

¢

c

c

¢

c

Pseudo-random value between © and 255, updated each frame
Same as RAND but for © to max. Powers of 2 are optimized.
Same as RAND(max) but doesn’t need frame wait. Slower.

Gives length of string. Useful in macros.
Gives current cursor position. Expression evaluated, not

Current frame number (©-65535, cycles over itself)
1 if Intellivision is NTSC, © otherwise
Alias for Llocations ©-23 of STIC (the MOB buffer)

#BACKTAB() ¢ Alias for screen buffer ($60200-$%02EF)
FLASH.FIRST, FLASH.LAST “ First and last rows of JLP flash memory

MUSIC.PLAYING ¢ 1 if music 1is playing, @ otherwise

