

LEA MACRO ASSEMBLER

User's Guide

Revision 1.7, 29th June 2019

License and Disclaimer

LEA Macro Assembler

All versions are copyright © 2019 John Croudy (the author).

https://github.com/croudyj

https://hackaday.io/croudyj

http://leo1cpu.puntett.net/

Permission is hereby granted, free of charge, to any person or organization obtaining a

copy of the software and accompanying documentation covered by this license ("the

Software") to use, reproduce, display, distribute, execute, and transmit the Software,

and to permit third-parties to whom the Software is furnished to do so, all subject to the

following:

The copyright notices in the Software and this entire statement, including the above

license grant, this restriction and the following disclaimer, must be included in all copies

of the Software, in whole or in part. The Software may be used for commercial purposes

but it must not be sold. The Software is not fault-tolerant and is not designed or

intended for use in hazardous environments requiring fail-safe performance, in which

the failure of the Software could lead directly to death, personal injury, or severe

physical or environmental damage.

All product names and brands mentioned in the Software are the property of their

respective owners and are for identification purposes only. Use of these names and

brands does not imply endorsement.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND

NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHOR OR ANYONE

DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER

LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF, OR IN CONNECTION WITH, THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

https://github.com/croudyj
https://hackaday.io/croudyj
http://leo1cpu.puntett.net/

Conventions used in this document

● Optional items are enclosed in square brackets​ []

● Example source code and names of directives are written in a​ ​fixed-width​ font​.

● When a concept is introduced for the first time, it appears in ​italics​.

● The symbol ⚠ denotes a warning about a limitation of the program.

● The symbol 🔧 denotes a helpful tip or piece of advice.

LEA Assembler Overview

LEA (pronounced "lee-ah") is a fully featured macro assembler which can be used to

turn assembly language programs into machine code ready to run on a target computer

system. It was designed to be extensible and can assemble programs for more than one

target CPU​. The current version is able to assemble programs written for the following

two target CPUs:

● Motorola 68000​: This CPU is automatically selected if the file extension is

68K or X68. For more information on this CPU, please see

https://en.wikipedia.org/wiki/Motorola_68000

● LEO-1:​ This CPU is automatically selected if the file extension is LEA. For more

information on this CPU, please see ​http://leo1cpu.puntett.net/

More CPU types are planned for future versions, in particular the 6502, Z80 and

SC/MP. These are all microprocessors that the author of LEA finds interesting enough

to possibly implement a custom CPU for.

🔧 ​LEA is a command-line tool. It does not come with any kind of 'IDE' or other

graphical interface. It is run by opening a command window and typing ​lea​, or by using

a batch file. It it therefore possible to use LEA alone or as part of an automated tool

chain.

Compatibility with older assemblers

Over the years, the author has gained familiarity with a number of assemblers, the most

recent being EASy68K and before that DevPac ST and DevPac Amiga. These assemblers

have influenced the design of LEA to some extent and LEA attempts to behave as much

like these older assemblers as possible. However, some significant differences do exist:

● LEA does not restrict white space in expressions and operand lists. This means

comments need to start with a semicolon.

● LEA uses 64-bit arithmetic. This may cause some differences if a value would

have overflowed past 32-bits.

● LEA does not support IFC, IFNC, IFEQ etc. It uses one unified expression syntax

which is a little like an early-80s implementation of structured BASIC.

⚠ Because of these differences, you may find that LEA does not successfully assemble

existing 68000 code without errors until the code has been modified.

https://en.wikipedia.org/wiki/Motorola_68000
http://leo1cpu.puntett.net/

Overview of operation

Assembly language programs are often written in one or more files which are assembled

separately and then linked with a linker to produce the final program. LEA does not

include a linking step; it simply assembles a single source file and directly produces

machine code output. This source file, often called Main.​ext (where ​ext is the extension

for a particular CPU type) can, of course, include as many other source files as necessary

by using the ​include directive. It is common for the main file to include other files such

as definitions, macros and so on, then produce the code for the main program, and

finally include other parts of the program (subroutines). This makes it possible to split a

program into as many pieces as necessary for easier editing. The file extension is also

used to decide which target CPU to assemble the code for.

The main file to be assembled is specified on the command line. If the filename is

fully-qualified, it can be anywhere in the file system. If not, LEA looks for it in the

current folder on the current drive. During assembly, the current folder is changed to

the folder where the main file is. All files specified in ​include and ​incbin directives can

be either fully-qualified or relative to the current folder, that is, the same folder as the

main file.

Source Code File Formats

Internally, LEA works entirely with UTF-8 strings. All text read from input files is

assumed to be UTF-8. This means it can read any pure ASCII text file, and it can also

read ANSI text files but any bytes with values above 128 will be handled according to

UTF-8 conventions rather than as 'codepage' values.

Unicode support

If any non-ASCII codepoints are found in symbol names or comments, LEA will attempt

to ensure that those codepoints are transferred through the system unmangled. Thus it

should be possible to write programs that have, for example, Asian characters in

comments and variable names and the listing should show these comments and names

correctly.

Character case

When converting characters to upper or lower case (and when checking strings with

case-insensitivity), LEA only considers the Latin alphabetic characters A to Z, and

strings stay the same length when the case is changed. This means that, for example, the

German character ß (Unicode ​U+00DF​) is not considered to be 'alphabetic' and is ignored

by case conversions, as are all the other non-ASCII Unicode codepoints.

BOMs

Byte Order Marks (BOMs) may optionally appear in source files. If no BOM is present,

UTF-8 is assumed. If a UTF-16 (BE or LE) BOM is encountered, the file will be loaded

and converted internally to UTF-8 for processing. All output files are written as UTF-8

with no BOM.

Listing files

LEA can produce a single listing for the entire run and/or individual listings for each file

included in the run, depending on command line options. The default is to produce a

whole-program listing in the same folder as the machine code output files. Currently,

this is fixed as a subfolder called ​Output under the ​project folder​, where the project

folder is the folder containing the main source file specified on the command line. The

whole-program listing is written to a file called ​<project>.lis where <project> is the

name of the project specified on the command line (the default is 'Project').

⚠ LEA does not check if any output file exists before overwriting it. Therefore, any files

in the ​Output​ subfolder might be deleted or overwritten when LEA is run.

Listing example and annotation

The following diagram shows the main features of the listing. Of particular importance

is the ​Location Counter which shows the address in the target machine where the

machine code is expected to be loaded.

Also note the Macro Line which has an ​m character to show a macro call. When a macro

call is nested there will be one more ​m for each nested level. The maximum depth of

macro nesting is determined by the number of ​m​s that will fit in that space in the listing.

This in turn is controlled by the ​listing picture​. See the section entitled ​Advanced

Features​ for more information.

Output files

LEA produces machine code in one or more formats. The default output formats are

decided by the target CPU, but they can be overridden by using command line options.

The following output formats are supported:

● Raw binary.

● Intel HEX format. See ​https://en.wikipedia.org/wiki/Intel_HEX

● Motorola SREC format. See ​https://en.wikipedia.org/wiki/SREC

Each of these formats can be output as a single contiguous file or split into high and low

files. See the command line options for more details. These files are written to the same

Output​ folder as the listing files and same overwrite warning applies to them.

Command line

LEA's command line interface takes a single filename (whose extension determines the

target CPU) and zero or more options. The command line has the following format:

 lea ​filename ​[/T][/L][/S][/R][/H][/C][/W][/I][/V][/D][/O][/F][/E][/Q][/Z]

The items enclosed in [] are optional arguments which specify the various assembler

options. Most of these options have the general form /​x​=​value where ​x is one of the

above options and ​value is either an integer, boolean or string. The ​/D option is an

exception; its value immediately follows it with no equals sign.

🔧 ​'-' can also be used in place of '/'.

https://en.wikipedia.org/wiki/Intel_HEX
https://en.wikipedia.org/wiki/SREC_(file_format)

Option Type Range Default Meaning

/T int 1 to 20 4 Set listing tab stop. This controls the number of

spaces used to represent a tab in the listing file.

/L int 1 to 999 46 Set listing lines-per-page. This controls the

number of lines on a page in the listing file

before a page break / page title sequence

appears.

/S int 1 to 50 20 Set symbol dump field width. This controls the

field width of symbols listed at the end of the

listing file.

/R int 1 to 999999 100000 Set maximum count for 'repeat' directive.

/H int 1 to 128 32 Set Intel/Motorola Hex file record length.

/C bool true, false false Case sensitivity. When this option is enabled

(true), LEA takes character case into account

when looking up symbols and substituting

macro arguments for parameters.

/W bool true, false true Generate whole program listing. If this option is

enabled (true), LEA will generate a listing file

for the whole program.

/I bool true, false false Generate individual listings. If this option is

enabled (true), LEA will generate a listing file

for every included source code file.

/F bool true, false false Display file, folder and project information. This

option causes LEA to output verbose

information regarding its use of files and

folders. It can help when troubleshooting

problems with files.

/E string CR, LF, CRLF CRLF Specify line-ending style for listing files.

/V bool true, false true Verbose output for errors and warnings.

/D string Predefine symbol(s).

e.g., ​/DDEBUG=1,ADDRESS=$1000

/P string - Project Set project name for listing file name and page

header.

/O string B1, B2, I1, I2,

M1, M2

Target

CPU

decides

Specify output file type(s). Any or all (or none)

can be specified at the same time.

/Q bool true, false true Optimize move, add and sub to quick version if

possible (68000 only).

/Z bool true, false true Optimize ​0(An)​ to ​(An)​ (68000 only).

Source code layout

Although LEA can target more than one CPU, the format of any particular source code

line is always the same:

[label[:]] [order] [comment]

A ​label is a symbol that takes on the value of the location counter at the start of the line

it appears on. The label can end with an optional colon (:) which is solely for readability

and is ignored by the assembler. Labels can be ​global or ​local​. A global label starts with

either A to Z or underscore (_) and can contain any number of characters A to Z, 0 to 9

or underscore. Global labels are used for defining ​constants​, ​variables or ​macros and

also for naming routines. Local labels begin with either a dot (.) or a colon (:) and are

used as branch targets or local data labels within routines. Local labels have a ​scope

which is defined by the surrounding global labels and do not exist outside that scope.

The appearance of a global label begins a new scope for local labels. Note, though, that

the local scope does ​not end when a global label is encountered at the start of a set, equ

or macro directive.

An ​order​ is the generic name given to a ​directive​, a ​mnemonic​, or a ​macro​.

A directive is an assembler command that instructs the assembler to perform some

action. It usually does not generate any machine code, although some do (e.g., ​dc​).

A mnemonic is a ​keyword used by a particular target CPU to refer to an instruction. For

example, the 68000 keyword ​move​ is a mnemonic.

A macro is a recorded sequence of source code lines that can be invoked (expanded

inline) by using the name of the macro as if it were a directive. For detailed information

see the section entitled 'Macros'.

White space

The gaps between items on a line are made up of white space which is any number of

tabs or spaces. Unlike some assemblers, LEA does not restrict white space usage. Any

amount of whitespace can appear between items, including within expressions and

operand lists. Some older assemblers would flag an error if, for example, there was a

space in an operand list and would force the programmer to write difficult-to-read code

with lots of items crammed together. In LEA, the only white space requirement is that

spaces cannot appear inside names or numbers and there must be at least one tab or

space before the order field, whether or not a label appears at the start of the line.

Comments

An entire line is treated as a comment if it begins with an asterisk (*) or a semicolon (;).

A comment can also appear at the end of a line of code, in which case it should start with

a semicolon.

* This is a comment.

; This is also a comment.

moveq #9, d0 ; This is also a comment.

⚠Much of the time, comments can appear at the end of a line without a semicolon, but

there are certain situations where that will cause an error. Because the assembler allows

free use of white space in expressions, spurious text after an expression may appear like

the expression is continuing. To be on the safe side, always use a semicolon.

move.l 10, 20 This comment is OK.

move.l 10, 20 - This comment is not OK.

move.l 10, 20 * This comment is not OK.

Expressions

Anywhere in the source code where a number can be used, an entire ​expression can be

used. Expressions instruct LEA to perform a calculation in order to compute a number,

so that the programmer does not have to compute the number and type it in. Note that

these computations are performed by the assembler, not the target CPU. Very often, an

entire expression generates only part of a single target CPU instruction. Consider this

code snippet:

RAM equ $80000

OFFSET equ $40

…

lea RAM+OFFSET, a0

Here, the ​lea instruction uses the expression ​RAM+OFFSET ​to make the code easier to

read and modify.

Numeric values

All internal arithmetic is done using 64-bit integers. To define a numeric value in source

code, simply type it in; the default is decimal. Any value up to the maximum for signed

64-bit arithmetic can be used, but the results must fall in the range suitable for the

target CPU instructions they appear in.

Radixes

LEA supports the usual radixes. As mentioned above, decimal is the default. The

following other radixes are possible by prefixing numbers with the relevant specifier:

Specifier Radix Digit range Example

% Binary 0..1 %10101001

@ Octal 0..7 @604705

$ Hexadecimal 0..15 $1234ABCD

' Character See ASCII constants 'Name'

Operators

LEA allows expressions to be constructed by using a variety of operators which are

executed according to their precedence. For example, as is common in programming

languages, the ​+ operator has a lower precedence than ​*​. This makes the ​* operate

before the ​+​. So:

X set 5 * 4 + 3 * 2

will be executed as if it had been written as:

X set (5 * 4) + (3 * 2) ; 20 + 6 = 26

Parentheses can be used to force the order of execution, for example:

X set 5 * (4 + 3) * 2 ; 5 * 7 * 2 = 70

The following is a list of supported operators and their meanings

+ Add

- Subtract

* Multiply

/ Divide

% ​(or ​MOD​) Modulus

&

AND

Bitwise AND

Logical AND

|

OR

Bitwise OR

Logical OR

^

EOR

Bitwise Exclusive OR

Logical Exclusive OR

~

NOT

Bitwise NOT

Logical NOT

<< Shift left

>> Shift right

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal to

<> Not equal to

+ Unary plus

- Unary minus

() Parentheses

The following table shows operator precedence from lowest to highest:

Prec. Operation Symbols

1

Bitwise OR / Exclusive OR | ^

Logical OR / Exclusive OR OR EOR

2

Bitwise AND &

Logical AND AND

3 Relational < <= > >= = <>

4 Add, subtract + -

5 Multiply, divide, modulus * / % MOD

6 Shift left, shift right << >>

7

Unary plus, Unary minus, Bitwise NOT + - ~

Logical NOT NOT

8 Parentheses ()

Bitwise vs Logical operators

The operators for ​and​, ​or​, ​exclusive-or and ​not come in two flavours; ​bitwise and

logical​. These operate according to the following rules:

● The bitwise operators perform an operation on the individual bits of the values in

the same way as the 68000's logical operations do.

● The logical operators perform boolean operations on the values by considering

them as simply ​true​ or ​false​.
● A value is considered to be true when it is non-zero and false when it is zero.

● True is represented by ​-1​ and false by ​0​.

The following table shows how these operations compare to the C/C++ languages. Bear

in mind that in C/C++, true is represented by ​1​, but LEA represents true by using ​-1​.

Operation LEA C/C++

Bitwise ​and & &

Bitwise ​or | |

Bitwise ​eor ^ ^

Bitwise ​not ~ ~

Logical ​and AND &&

Logical ​or OR ||

Logical ​eor EOR n/a

Logical ​not NOT !

Character strings

LEA supports two kinds of character strings depending on the context.

ASCII constants

In expressions, a numeric value can start with a single quote (​'​) which indicates that the

value is an ​ASCII constant​. The characters in the string are encoded into the value as

ASCII. For example:

'A' ; Value is 65 (hex $41)

'AB' ; Value is 16,706 (hex $4142)

'ABC' ; Value is 4,276,803 (hex $414243)

Since LEA internally uses 64-bit numbers, the longest ASCII constant can be eight

characters long, but this is not compatible with any of the supplied target CPUs. For

example, the 68000 only allows values up to 32 bits wide which would allow a

four-character ASCII constant such as ​'ABCD'​. An example use of this feature is:

bsr CheckKeyboard

cmp.b #'b', d0 ; Was B pressed?

beq .KeyB

🔧​ Single quotes can appear in ASCII constants by 'doubling them up'. For example,

the construct ​''''​ specifies a single ​'​ character.

String values

Some kinds of expressions also allow strings which consist of characters surrounded by

single quotes. For example, the ​include and ​incbin directives expect a file name

parameter. Strings are also allowed in some contexts during expression evaluation. They

can be added with the + operator or compared with the relational operators. The result

of string addition is another string which is the concatenation of the two strings. The

result of string comparison is the value 0 (meaning false) or -1 (meaning true). An

example follows:

HILO Macro String, Value

if "\String" = "Hi"

x set \Value >> 8

else

x set \Value & 255

endif

endm

⚠ Some older assemblers accomplish this by using the special ​if statements IFC and

IFNC. LEA does not currently support this syntax.

🔧 Double quotes can appear in strings by 'doubling them up'. For example, the

construct ​""""​ specifies a single ​"​ character.

System symbols

LEA defines the following symbols at the start of the run. These symbols can be used in

expressions anywhere a regular symbol can be used. These are read-only

assembler-controlled symbols that appear as constants in the target program.

_YEAR The current year (e.g., 2019)

_MONTH The current month (1 to 12)

_DAY The current day (1 to 31)

_HOUR The current hour (0 to 23)

_MINUTE The current minute (0 to 59)

_SECOND The current second (0 to 59)

_WEEKDAY The current day of the week (0=Sunday to 6 = Saturday)

_YEARDAY The current day of the year (1 to 366)

_TRUE 0xFFFFFFFFFFFFFFFF ​(-1)

_FALSE 0x0000000000000000 ​(0)

_REPCNT The value of the outermost repeat block loop counter. If

no repeat block is active, this symbol is undefined.

_LC The value of the location counter as it was at the start of

the line. You can also use ​*​ to get the location counter.

_RS The current value of the RS offset (68000 only). For

more information see the section on the ​rs​ directive.

Macros

A macro is a recorded sequence of source code lines. They are first defined by using the

macro directive and later expanded as many times as needed by invoking the macro as

an order. Macros can have any number of parameters which can be filled from

arguments specified after the macro at expansion time. Each time a macro is expanded,

each line of the macro body is scanned for parameters which are replaced with the

corresponding arguments. Furthermore, the special parameter ​\@ is replaced by the

macro call counter which is a counter that starts at zero and is incremented each time

the macro is invoked.

This simple example demonstrates how to use named parameters in a macro:

MOVEIT macro value, register

moveq #\value, d\register

endm

In this example, the named values are ​value and ​register​. The macro would be invoked

as follows with the number of arguments matching the number of parameters:

MOVEIT 1, 0

MOVEIT 5, 6

MOVEIT 7, 2

In the body of the macro, the parameters start with the ​\ character and are substituted

verbatim for the corresponding arguments specified when the macro is invoked. Thus,

the above would generate the following code:

moveq #1, d0

moveq #5, d6

moveq #7, d2

An alternative is to use ​automatic parameters which are simply named ​\1​, ​\2​, ​\3 etc.

In this case, the example macro would be written as follows:

MOVEIT macro

moveq #\1, \2

endm

This method is less readable but was provided for compatibility with some older

assemblers.

Macro call counter

Following is an example of using the macro call counter mentioned above. In this case is

it used to make a local label unique on every call of the macro:

MYLOOP macro count

moveq #\count, d7

.\@ bsr SomeRoutine

dbra d7, .\@

endm

MYLOOP 9 ; Label will be .0

MYLOOP 5 ; Label will be .1

MYLOOP 7 ; Label will be .2

Macro parameters are substituted inside strings and comments as well. For example,

the following:

FRUIT macro

dc.b '\@' ; \@

endm

FRUIT

FRUIT

FRUIT

generates:

dc.b '0' ; 0

dc.b '1' ; 1

dc.b '2' ; 2

Directives

Directives instruct the assembler to perform certain actions. There are two kinds of

directives in LEA, ​built-in and ​custom​. Built-in directives are, as the name implies, built

into the assembler. These are directives that tend to be useful regardless of the target

CPU. Custom directives, on the other hand, are only useful when assembling for a

particular CPU. They are provided by the target CPU implementation and only work

when that CPU is selected as the target.

Summary of built-in directives

include Includes another source file.

incbin Includes a file as binary.

equ Creates a constant symbol.

set Creates and/or sets the value of a variable symbol.

macro Begins a macro definition.

endm Ends a macro definition.

mexit Exits a macro prematurely.

end Marks the end of the source code and stops assembly.

if Begins an 'if' block.

else Begins the 'else' clause in an if-block.

endif Ends an 'if' block.

while Begins a 'while' block.

endw Ends a 'while' block.

repeat
rept

Begins a 'repeat' block.

endr Ends a 'repeat' block.

tabstop Sets the tab stop in the listing file(s).

list Turns the listing on.

nolist Turns the listing off.

expand Turns macro expansion listing on.

noexpand Turns macro expansion listing off.

org Sets the value of the location counter.

section Switches to another section.

print Prints a simple message to the output window and

listing file(s).

printf Prints a formatted message to the output window and

listing file(s).

fail Flags an error and displays an error message.

Detailed explanation of built-in directives

INCLUDE

[<label>] include <filename>

Includes another source file. The filename parameter is a string and as such must be

enclosed in double quotes if it contains any spaces. Includes can be nested meaning that

an included file is free to include other files. A file cannot include itself directly or

indirectly. If a file is included more than once, assembly will abort with a fatal error.

Example:

include "SourceFile.68K"

INCBIN

[<label>] incbin <filename>

Includes a file as binary. The filename parameter is a string and as such must be

enclosed in double quotes if it contains any spaces. This directive copies the specified

file directly into the output file(s) as raw bytes of data. If the file is larger than 128MB,

assembly will abort with a fatal error. Even if the file is not too big, this directive has the

potential to overrun the location counter beyond the maximum allowed for the target

CPU. If this happens, assembly will abort with a fatal error. Example:

MyData: incbin "DataFile.dat"

EQU

<label> equ <expression>

Creates a constant label. The result of the expression is assigned to a new label which

can subsequently be used in future expressions (or in previous expressions if forward

references are allowed there). Once assigned, the value of this label is fixed and cannot

be changed. This directive is useful for assigning meaningful symbolic names to values

such as memory or hardware addresses. Example:

MemoryBase equ $40000

SET

<label> set <expression>

Creates and/or sets the value of a variable. The result of the expression is assigned to an

assembler variable which can subsequently be used in future expressions (or in previous

expressions if forward references are allowed there). Once assigned, the value of the

variable is free to change later. This directive is useful for creating temporary variables

such as counters which can be used in macros and conditional expressions. Example:

Count set 10

Count set Count + 1

MACRO

<label> macro <argument> [, <argument>...]

Begins a macro definition which can later be used as if it were a directive in order to

automatically create predefined blocks of code. Macros must end with the ​endm directive

and their definitions cannot be nested (although a macro ​can invoke another macro).

When the assembler encounters the ​macro directive, it stores (verbatim) everything

between ​macro and ​endm in a macro list. The label at the start of the line specifies the

name of the macro which will now work as a 'custom order'. This makes it work like a

directive that has optional arguments.

For more information, see the section above entitled 'Macros'. Example:

Write macro addr, data, reg

lea \addr, a\reg

move #\data, (a\reg)

endm

ENDM

endm

Ends the definition of a macro which was started with the ​macro directive. No label is

allowed to appear before ​endm​.

MEXIT

mexit

Exits a macro prematurely as if ​endm had been encountered. This is useful when used

with a conditional directive such as ​if to make the macro exit if a certain condition is

met. It is similar to using ​return in a C/C++ function (e.g., after detecting an error

condition). Example:

Store macro reg

if \reg > 7

 print "Register error"

 mexit

 clr.l (a\reg)

endif

endm

END

[<label>] end [<expression>]

When the ​end directive is encountered, assembly stops as if the end of the file had been

reached. Any lines of text after the end directive are ignored. ​end can be followed by an

optional expression which specifies the starting address for executing the program. This

address is written to certain kinds of output files (e.g., SREC) to tell the target system

what address to start executing the program at.

IF

[<label>] if <expression>

The ​if directive begins an 'if' block which allows conditional assembly of blocks of code.

This feature is useful when different code needs to be created in different situations. For

example, you might want to only produce certain debugging code when the 'debug'

version of the program is being assembled. The expression after the ​if is evaluated and

the block (up to the following ​else or ​endif​) is only assembled if the result is ​non-zero​.

If an ​else appears in the block, the code between the ​else and the following ​endif is

only assembled if the original expression evaluated to ​zero​. Example:

if x = 10 OR y = 3

 print "true"

else

 print "false"

endif

If-blocks can be nested as follows:

if x = 10

 if y = 3

 print "x = 10, y = 3"

 else

 print "x = 10, y <> 3"

 endif

else

 print "x <> 10"

endif

⚠ ​All symbols used in ​if statements must already have been defined beforehand.

Forward references are not allowed with this directive.

ELSE

[<label>] else

Begins the 'else' clause in an if-block. See ​if​ for more details.

ENDIF

[<label>] endif

Ends an 'if' block. See ​if​ for more details.

WHILE

[<label>] while <expression>

Begins a 'while' loop. The expression is evaluated and if the result is ​non-zero​, the code

up to the following ​endw is executed and the process is repeated at the while statement.

Once the expression evaluates to ​zero the loop terminates. 'While' loops can be nested as

long as there is one ​endw​ to match each ​while​. Example:

count set 10

while count > 0

nop

count set count - 1

endw

⚠ ​All symbols used in ​while statements must already have been defined beforehand.

Forward references are not allowed with this directive.

⚠ ​There is currently no provision for exiting the while loop if the condition never

evaluates to zero. In this case, LEA will continue to generate code until the location

counter overruns. The command line on Windows allows Control-C to be used to abort

the program if such a situation occurs.

ENDW

[<label>] endw

Ends a 'while' block. See ​while​ for more details.

REPEAT

[<label>] repeat <expression>

Begins a 'repeat' loop. The expression is evaluated and a variable called the ​repeat

counter is created with a value of zero. The lines of code between the repeat and the

following ​endr are then assembled, the counter is incremented, and process is repeated

at the repeat statement while the counter is not equal to the result of the expression, at

which time the loop terminates. 'Repeat' loops can be nested as long as there is one ​endr

to match each ​repeat​.

The repeat count can be accessed by using the ​repeat count substitution operator which

is a question-mark. LEA scans all lines of code for the occurrence of a question-mark

and if found, the outermost repeat count is substituted in place of the question-mark.

Strings and comments are not affected by this substitution. Example:

count set 10

repeat count * 2

moveq #?, d0

bsr Function

endr

⚠ ​All symbols used in ​repeat statements must already have been defined beforehand.

Forward references are not allowed with this directive.

⚠ ​The number of loops is limited to 100,000 unless overridden with the command

line option ​/R​. The command line on Windows allows Control-C to be used to abort the

program if so desired.

🔧 ​The alias ​rept can also be used for this directive. This is to allow compatibility with

other assemblers.

ENDR

[<label>] endr

Ends a 'repeat' block. See ​repeat​ for more details.

TABSTOP

[<label>] tabstop <expression>

Sets the tab stop in the listing file(s). The expression is evaluated and the result is set as

the number of spaces that will be used to represent a tab in the listing file. This overrides

the default of 4 which itself may have been overridden by using the command line

option ​/T​. Example:

 tabstop 8

LIST

[<label>] list

Turns the listing on. If the listing is turned on or off inside an included file, the previous

state will be restored at the end of the included file.

NOLIST

[<label>] nolist

Turns the listing off. If the listing is turned on or off inside an included file, the previous

state will be restored at the end of the included file.

EXPAND

[<label>] expand

Turns macro expansion listing on. If the listing is turned on or off inside an included

file, the previous state will be restored at the end of the included file.

NOEXPAND

[<label>] noexpand

Turns macro expansion listing off. If the listing is turned on or off inside an included

file, the previous state will be restored at the end of the included file.

ORG

[<label>] org <expression>

Sets the value of the location counter. The location counter keeps track of the address in

the target system where instructions and data will be stored. Each section has its own

location counter so using ​org in a particular section will only change the location

counter associated with that section. See the ​section directive for more information

about sections.

⚠ ​All symbols used in ​org statements must already have been defined beforehand.

Forward references are not allowed with this directive.

SECTION

[<label>] section <expression>

Switches to another section. Sections make it possible to output code or data for

different purposes in different parts of the target system's memory, but without having

to separate out all the source code for those parts. They are identified by numbers which

in turn can be given symbolic names by using ​equ or ​set​. Each section has its own

location counter, so only the currently active section responds to activity involving the

location counter such as code generation or the org directive.

By way of example, let's say the target system has several banks of memory which are

used for different purposes, say code or data. You can generate the code and data all in

one place by assigning a section for the code and another for the data. Example:

code equ 1

data equ 2

 section code

org 0

lea data1, a0

bsr Routine

section data

org $100000

Data1: dc.b 1, 2, 3, 4, 5, 6, 7, 8

 section code

lea data2, a0

bsr Routine

section data

Data2: dc.b 1, 2, 3, 4, 5, 6, 7, 8

In the above example, all the code specified in section "code" will be output to

contiguous memory locations at the section's location counter (starting at its origin of

0), advancing the location counter by the required amount. All the data bytes specified

in section "data" will be output to contiguous memory locations at the section's location

counter (starting at its origin of $100000), advancing ​that location counter by the

required amount. This feature is particularly useful when creating macros or loops that

generate some code and then some data that is used by that code. Sections can also be

used for creating different streams of code from the same macro even though the code

will appear on the target machine at completely different memory locations.

🔧 ​If the ​section​ directive is not used, the default section (zero) is assumed.

PRINT

[<label>] print <expression> [, <expression>...]

Prints a simple message to the output window and listing file(s). The directive is

followed by one or more expressions separated by commas. The result of each

expression is then 'printed' to the output window and the listing file(s). This simple

message system is useful when debugging macros and the like as it makes it possible to

see the contents of symbols or macro parameters.

🔧 ​String expressions are also allowed so that values can be labelled in the 'printout'.

Example:

PR macro x

print "Fred ", 7 * \x, " Bill ", 9 * \@

endm

PR 4

PRINTF

[<label>] printf <string> [<expression>, ...]

Prints a formatted string to the output window and listing file(s). The directive is

followed by a formatting string and then zero or more expressions separated by

commas. The format string supports the same formatting specifiers as the C runtime

library ​printf function. A few of them will be listed here, but there are many more which

can be found here: ​http://www.cplusplus.com/reference/cstdio/printf/

Format

specifier

Function Argument

%u Unsigned value Number

%d Signed value Number

%X Hexadecimal value Number

%s String value String (see warning below)

Example: printf "Value of X: %06d", x

Result: Value of X: 000009

⚠ This is an advanced directive which (currently) can crash LEA if used incorrectly,

because it directly passes the parameters to the C runtime library with no error

checking. In particular, the ​%s specifier ​must match a string and floating-point specifiers

cannot be used, nor can specifiers that ​write to​ memory.

FAIL

[<label>] fail [<expression>]

Flags an error and displays an error message. Assembly continues but the output file

cannot be used due to the error. The error message is the result of the supplied

expression which can be either a string or a number. Example:

if x > 9

fail "Invalid value"

endif

http://www.cplusplus.com/reference/cstdio/printf/

Advanced Features

Listing pictures

LEA's listing file formatting is controlled by three special strings called ​pictures . A
1

picture is a text string which specifies the placement and length of the various fields on a

single line of the listing. These strings are stored in files named ​Picture.* which are

supplied with the program and can be edited by advanced users if so desired. Each file is

for a particular target CPU.

The first line of the picture file is the main ​listing picture​ and has this format:

[$AAAAAAAA IIIIIIIIIIIIIIIIIIII lllllmmmm]

The above picture consists of four picture fields. The field specifiers are as follows:

A Specifies the position and length of the ​location counter​ field.

I Specifies the position and length of the ​instruction​ field.

L Specifies the position and length of the ​line number ​field.

M Specifies the position and length of the ​macro​ field.

The '​$​' in the above listing picture is an example of an extra character that has no special

meaning but appears verbatim in the listing file at that position. You can add special

characters anywhere between fields if so desired, but not inside fields.

🔧 ​The case of the first character in a picture field determines the case used for the

corresponding field in the listing file.

The second line is the ​listing picture surplus​. This is used when a long instruction

overruns onto more than one line of the listing. This makes it possible to use more of the

'surplus' line and thus requires fewer listing lines for long runs of data bytes (e.g., with

dc.b​).

[III]

1
 This feature is named after a similar concept in the COBOL programming language.

The final line is the ​listing file padding​. This is a prefix used when a file name is output

to the listing file.

[:--------]

Expression substitution

LEA allows entire expressions to be substituted anywhere in the source code by

surrounding them with braces (​{}​). This powerful feature allows the result of any

expression to appear anywhere in the source text as if the value had been typed there.

Consider the following code snippet:

repeat 8

moveq #?, d?

endr

This will generate eight ​moveq instructions which load values from 0 to 7 into registers

d0 to ​d7​. But what if we want the registers in the reverse order, ​d7 to ​d0​? We need to

replace the final ​? with ​7-?​. This is not possible unless we can somehow 'paste' the

expression into the code, similar to the way the C preprocessor does 'token pasting'. In

LEA, this is called ​expression substitution​, and it is achieved as mentioned above, by

placing the expression inside braces. So, we change the code to this:

repeat 8

moveq #?, d{7-?}

endr

LEA scans all text lines for matching braces. When it finds the ​{7-?}​, it extracts the

expression ​7-?​, evaluates it, and replaces the entire ​{7-?} string with the result ​before

assembling the line. So the line appears to the assembler as if the programmer had

typed the result of the expression into the actual source code. The result of the above is:

repeat 8

moveq #0, d7

moveq #1, d6

moveq #2, d5

moveq #3, d4

moveq #4, d3

moveq #5, d2

moveq #6, d1

moveq #7, d0

endr

This rather simple example should give you some idea of how expression substitution

can make it easier to produce code automatically. When combined with loops and

macros, it becomes a very powerful tool.

⚠ ​All symbols used in expression substitution must already have been defined

beforehand. Forward references are not allowed. If the expression fails to evaluate, it

will simply be left in the code unevaluated, without the braces. No error message will be

generated unless the resulting code contains errors (which it usually will).

68000 Directives

The following directives are 68000-specific and are provided by the 68000 target CPU

implementation. This means they only work when that CPU is selected as the target.

⚠ ​A full description of the 68000 instruction set is beyond the scope of this guide.

There are many excellent sources of this information online.

Summary of 68000 directives

even Moves the location counter to the next word boundary, if necessary.

dc 'Define Constant'. Defines one or more constant values.

dcb 'Define Constant Block'. Defines a block of constants with the same value.

ds 'Define Space'. Defines space at the current location.

rs 'Reserve Space'. Moves the RS offset either forwards or backwards.

rsset Sets the value of the RS offset.

rsreset Resets the value of the RS offset to zero.

Detailed explanation of 68000 directives

EVEN

[<label>] even

If the location counter is current set to an odd value, this directive increments it. This

aligns it on a word boundary. When LEA generates 68000 instructions, this alignment

is performed automatically, but there are times when the programmer needs to force

alignment. Once such time is when a label appears at an odd address but is not on the

same line as an instruction. Consider the following:

 org $1000

 dc.b 9, 8, 7

Label: ; This label is at address $1003.

 nop ; This instruction is at address $1004.

After the odd number of ​dc.b bytes, the location counter is odd. Although the following

nop will be word-aligned, the label will not. Any branch to the label will then cause an

address error. This problem can be solved by using the ​even ​directive as follows:

 org $1000

 dc.b 9, 8, 7

 ​even
Label: ; This label is at address $1004.

 nop ; This instruction is at address $1004.

DC

[<label>] dc[.size] <expression> [, <expression>...]

This directive defines constant values in the code at the current location. It is useful for

defining tables and character strings. The directive can be followed by an optional size

specifier to define bytes (​.b​), words (​.w​) or longwords (​.l​). The default is words. Any

number of expressions can follow, separated by commas. A few examples follow:

Message: dc.b 'Hello world!', 13, 10, 0

Table: dc.w 6 * 7, -48, 'AB', $1234, NOT 0, %1001

Vectors: dc.l Table, Message, 0

⚠ ​This directive does not support ASCII constants. The ​'AB' above is interpreted as a

string just as if it had been written ​"AB"​, and the characters are output as the individual

words ​$0041​ and ​$0042.

DCB

[<label>] dcb[.size] <expression>, <expression>

This directive defines a block of data items at the current location, all with the same

value. The directive can be followed by an optional size specifier to define bytes (​.b​),

words (​.w​) or longwords (​.l​). The default is words. Two expressions must follow, the

first giving the number of items to generate and the second, the value. A few examples

follow:

Block1: dcb.b 80, $40 ; Generate 80 bytes of value $40.

Block2: dcb.w 80, $40 ; Generate 80 words of value $0040.

Block3: dcb.l 80, $40 ; Generate 80 longs of value $00000040.

DS

[<label>] ds[.size] <expression>

This directive defines space in the code at the current location. It should not be confused

with ​rs​ (see later). Example:

Empty1: ds.b 80 ; Define 20 bytes of space.

Empty2: ds.w 80 ; Define 20 words of space (40 bytes).

Empty3: ds.l 80 ; Define 20 longs of space (80 bytes).

RS

[<rs-label>] rs[.size] <expression>

This directive reserves space in a ​structure by manipulating a value called the RS offset

which keeps track of the current position in the structure being defined. The directive

can be followed by an optional size specifier to reserve bytes (​.b​), words (​.w​) or

longwords (​.l​). The default is words. First the expression is evaluated and the result is

multiplied by the size (1, 2, or 4). If the result is positive, the current value of the RS

offset is assigned to the label and then the offset is advanced by the result amount. If the

result is negative, however, the RS offset is moved (backwards) by the amount ​before

being assigned to the label. This makes it convenient for defining negative-going

structures that are used with the ​link​ instruction. A few examples follow:

Label1:

 rsset 8

.x rs.b 1 ; Local label .x is set to 8.

.y rs.b 1 ; Local label .y is set to 9.

 lea PosData, a0

 move.b .x(a0), d0

 move.b .y(a0), d1

 …

Label2:

 rsreset

.x rs.w -1 ; Local label .x is set to -2.

.y rs.w -1 ; Local label .y is set to -4.

.L rs.l -1 ; Local label .L is set to -8.

 link a6, #_RS ; Allocate the above structure on the

 ; stack and set a6 to point to it.

 clr .x(a6)

 clr .y(a6)

 move.l #200, .L(a6)

 …

 unlk a6 ; Deallocate the structure.

The above examples use local labels to demonstrate how to reuse structure element

names in different structures. Global labels can also be used, but name clashes will

occur if the same names are used in different structures.

RSSET

[<rs-label>] rsset <expression>

This directive sets the value of the RS offset to the result of an expression. See the

description of the ​rs directive for more information about the RS offset. The optional

label is assigned in the same way as for ​rs​. Example:

rsset 10

RSRESET

[<rs-label>] rsreset

This directive resets the value of the ​RS offset to zero. It is equivalent to using the ​rsset

directive with zero for the parameter. See the description of the ​rs directive for more

information about the RS offset. Example:

rsreset

Appendix

Formal expression grammar (BNF form)

<double-quote> :== '"'

<single-quote> :== "'"

<location-counter> :== "*"

<ascii-char> :== any ASCII byte value from 32 to 127

<alpha> :== "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "a" |

 "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |

 "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" |

 "t" | "u" | "v" | "w" | "x" | "y" | "z"

<bin-digit> ::= "0" | "1"

<oct-digit> ::= <bin-digit> | "2" | "3" | "4" | "5" | "6" | "7"

<dec-digit> ::= <oct-digit> | "8" | "9"

<hex-digit> ::= <dec-digit> | "A" | "B" | "C" | "D" | "E" | "F" |

 "a" | "b" | "c" | "d" | "e" | "f"

<bin-value> :== "%" <bin-digit>+

<oct-value> :== "@" <oct-digit>+

<hex-value> :== "$" <hex-digit>+

<dec-value> :== <dec-digit>+

<char-value> :== <single_quote> <ascii-char>* <single_quote>

<ident-first> :== "_" | <alpha>

<ident> :== <ident-first> [<ident-first> | <dec-digit>]*

<global-label> :== <ident>

<local-label> :== "." | ":" <ident>

<label> :== <local-label> | <global-label>

<unsigned-number> :== <bin-value> | <oct-value> | <dec-value> |

 <hex-value> | <char-value>

<string> :== <double-quote> <char> <double-quote>

<orop> :== "|" | "^" | "OR" | "EOR"

<andop> :== "&" | "AND"

<addop> :== "+" | "-"

<mulop> :== "*" | "/" | "%" | "MOD"

<relop> :== "<" | "<=" | ">" | ">=" | "=" | "<>"

<shiftop> :== "<<" | ">>"

<unop> = "+" | "-" | "~" | "NOT"

<factor> ::= "(" <expression> ")" | <location-counter> |

 <unsigned-number> | <ident> | <string>

<signed-factor>::= <unop> <signed-factor> | <factor>

<shift-expression>::= <signed-factor> [<shiftop> <signed-factor>]*

<term> ::= <shift-expression> [<mulop> <shift-expression>]*

<simple-expression> ::= <term> [<addop> <term>]*

<relation> ::= <simple-expression> [<relop> <simple-expression>]*

<logical-term> ::= <relation> [<andop> <relation>]*

<expression> ::= <logical-term> [<orop> <logical-term>]*

